01 Confidence intervals for the difference between two proportions
01 Confidence intervals for the difference between two proportions#
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats, special
\[\begin{split}\begin{array}{lllll}
\displaystyle
z&=&\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}
&\approx&
\frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}\\
\displaystyle
z&=&\frac{(\hat{p}_1-\hat{p}_2)-(p_1-p_2)}{\sqrt{\frac{p_1(1-p_1)}{n_1}+\frac{p_2(1-p_2)}{n_2}}}
&\approx&
\frac{(\hat{p}_1-\hat{p}_2)-(p_1-p_2)}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}+\frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}}\\
\end{array}\end{split}\]
\[p_1-p_2\]
\[\begin{split}\begin{array}{lllll}
\displaystyle
\hat{p}\pm z_*\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\\
\displaystyle
(\hat{p}_1-\hat{p}_2)\pm z_*\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}+\frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}\\
\end{array}\end{split}\]
\[
\mathbb{E}(\hat{p}_1-\hat{p}_2)
=
\mathbb{E}(\hat{p}_1)-\mathbb{E}(\hat{p}_2)
=
p_1-p_2
\]
\[\begin{split}\begin{array}{lll}
\sigma^2_{\hat{p}_1-\hat{p}_2}
&=&
\sigma^2_{\hat{p}_1}+\sigma^2_{\hat{p}_2}\\
&=&
\frac{p_1(1-p_1)}{n_1}+\frac{p_2(1-p_2)}{n_2}\\
&\approx&
\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}+\frac{\hat{p}_2(1-\hat{p}_2)}{n_2}\\
\end{array}\end{split}\]
\[
\mathbb{E}(\bar{x}_1-\bar{x}_2)
=
\mathbb{E}(\bar{x}_1)-\mathbb{E}(\bar{x}_2)
=
\mu_1-\mu_2
\]
\[\begin{split}\begin{array}{lll}
\sigma^2_{\bar{x}_1-\bar{x}_2}
&=&
\sigma^2_{\bar{x}_1}+\sigma^2_{\bar{x}_2}\\
&=&
\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}\\
&\approx&
\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}\\
\end{array}\end{split}\]
\[
\mathbb{E}\bar{x}_d
=
\mu_d
\]
\[
\sigma^2_{\bar{x}_d}
=
\frac{\sigma_d^2}{n}
\approx
\frac{s_1^2}{n}
\]