02 Experimental versus theoretical probability simulation
02 Experimental versus theoretical probability simulation#
%%html
<iframe width="700" height="400" src="https://www.youtube.com/embed/Nos-xOCpQqg/" frameborder="0" allowfullscreen></iframe>
import random
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
import matplotlib.pyplot as plt
import seaborn as sns
def coin_trial():
heads = 0
for i in range(100):
if random.random() <= 0.5:
heads +=1
return heads
coin_trial()
58
def simulate(n):
trials = []
for i in range(n):
trials.append(coin_trial())
return(sum(trials)/n)
simulate(1000)
50.136
# make similar simulation using numpy and shit get inspiration from DATACAMP
https://www.dataquest.io/blog/basic-statistics-in-python-probability/