05 How parameters change as data is shifted and scaled
05 How parameters change as data is shifted and scaled#
%%html
<iframe width="700" height="400" src="https://www.youtube.com/embed/JFlI4Vxtzxo/" frameborder="0" allowfullscreen></iframe>
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
import matplotlib.pyplot as plt
from scipy import stats
x = np.array([7, 7, 5, 8, 10, 13, 5, 3, 2, 3, 5, 6])
df = DataFrame({'Data': x,
'Data+5': x+5,
'Data*5': x*5})
df
Data | Data+5 | Data*5 | |
---|---|---|---|
0 | 7 | 12 | 35 |
1 | 7 | 12 | 35 |
2 | 5 | 10 | 25 |
3 | 8 | 13 | 40 |
4 | 10 | 15 | 50 |
5 | 13 | 18 | 65 |
6 | 5 | 10 | 25 |
7 | 3 | 8 | 15 |
8 | 2 | 7 | 10 |
9 | 3 | 8 | 15 |
10 | 5 | 10 | 25 |
11 | 6 | 11 | 30 |
mean_std_df = df.describe()[1:3]
median_iqr_df = DataFrame({'Data': [np.median(df['Data']), stats.iqr(df['Data'])],
'Data+5': [np.median(df['Data+5']), stats.iqr(df['Data+5'])],
'Data*5': [np.median(df['Data*5']), stats.iqr(df['Data*5'])]
}, index=['median', 'iqr'])
df = pd.concat([df, mean_std_df, median_iqr_df])
df
Data | Data+5 | Data*5 | |
---|---|---|---|
0 | 7.000000 | 12.000000 | 35.000000 |
1 | 7.000000 | 12.000000 | 35.000000 |
2 | 5.000000 | 10.000000 | 25.000000 |
3 | 8.000000 | 13.000000 | 40.000000 |
4 | 10.000000 | 15.000000 | 50.000000 |
5 | 13.000000 | 18.000000 | 65.000000 |
6 | 5.000000 | 10.000000 | 25.000000 |
7 | 3.000000 | 8.000000 | 15.000000 |
8 | 2.000000 | 7.000000 | 10.000000 |
9 | 3.000000 | 8.000000 | 15.000000 |
10 | 5.000000 | 10.000000 | 25.000000 |
11 | 6.000000 | 11.000000 | 30.000000 |
mean | 6.166667 | 11.166667 | 30.833333 |
std | 3.128559 | 3.128559 | 15.642793 |
median | 5.500000 | 10.500000 | 27.500000 |
iqr | 2.750000 | 2.750000 | 13.750000 |
df[-4:]
Data | Data+5 | Data*5 | |
---|---|---|---|
mean | 6.166667 | 11.166667 | 30.833333 |
std | 3.128559 | 3.128559 | 15.642793 |
median | 5.500000 | 10.500000 | 27.500000 |
iqr | 2.750000 | 2.750000 | 13.750000 |