03 Z-score introduction
03 Z-score introduction#
%%html
<iframe width="700" height="400" src="https://www.youtube.com/embed/5S-Zfa-vOXs/" frameborder="0" allowfullscreen></iframe>
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
import matplotlib.pyplot as plt
from scipy import stats
\[ Z = \frac{x - \mu}{\sigma} \]
x = np.array([2, 2, 3, 2, 5, 1, 6])
mu = np.mean(x)
sigma = np.std(x)
z_score = (x - mu) / sigma
# alternative way
z_score_ = stats.zscore(x)
z_score
array([-0.59160798, -0.59160798, 0. , -0.59160798, 1.18321596,
-1.18321596, 1.77482393])
z_score_
array([-0.59160798, -0.59160798, 0. , -0.59160798, 1.18321596,
-1.18321596, 1.77482393])
df = DataFrame({'lengths of wigned trutles (cm)': x, 'Z-score':z_score_})
df
lengths of wigned trutles (cm) | Z-score | |
---|---|---|
0 | 2 | -0.591608 |
1 | 2 | -0.591608 |
2 | 3 | 0.000000 |
3 | 2 | -0.591608 |
4 | 5 | 1.183216 |
5 | 1 | -1.183216 |
6 | 6 | 1.774824 |